Generic Filtering of Infinite Sets of Stochastic Signals
نویسندگان
چکیده
A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter. Keywords—Optimal filtering, data compression, stochastic signals.
منابع مشابه
Filtering of infinite sets of stochastic signals: An approach based on interpolation techniques
We propose an approach to the filtering of infinite sets of stochastic signals, KY and KX. The known Wiener-type approach cannot be applied to infinite sets of signals. Even in the case when KY and KX are finite sets, the computational work associated with the Wiener approach becomes unreasonably hard. To avoid such difficulties, a new theory is studied. The problem addressed is as follows. Giv...
متن کاملOptimal Data Compression and Filtering: the Case of Infinite Signal Sets
We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each ...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملGenerated topology on infinite sets by ultrafilters
Let $X$ be an infinite set, equipped with a topology $tau$. In this paper we studied the relationship between $tau$, and ultrafilters on $X$. We can discovered, among other thing, some relations of the Robinson's compactness theorem, continuity and the separation axioms. It is important also, aspects of communication between mathematical concepts.
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کامل